
Conditional Adversarial Networks Assisted Road Extraction in Remote Sensing 
Imagery 

Jianhua Lia,*, Hongbing Mab 
Department of Electronic Engineering, Tsinghua University, Beijing, China 

ali-jh16@mails.tsinghua.edu.cn, bhbma@tsinghua.edu.cn 

*corresponding author 

Keywords: Generative adversarial networks, road extraction, remote sensing image, machine 
learning. 

Abstract: In this paper, we narrow down the task for conditional adversarial networks focusing on 
solving the binary segmentation problem for road extraction on remote sensing imagery. We 
constrain the objective of the generator of a conditional adversarial network to make it suitable to 
produce binary road predictions in an effective way. We evaluate our approach on the SpaceNet 
Roads dataset and our method shows promising results compared to standard segmentation models. 
Our best pixel level precision score on test set is 76.9%. This paper shows that adversarial networks 
with detailed images as input and binary mask as output can be optimized with certain adaption and 
optimization tweaks, showing potentials in solving computer vision problems. 

1. Introduction 
The extraction of roads on remote sensing imagery plays an important role in information 

acquisition, verification and update for Geospatial Information System (GIS) and urban road 
networks. Feature based road extraction methods use both road specific features and common image 
processing features. Road specific geometric features are used in [2] to improve road extraction 
accuracy. Salient features of roads are used in [3] to design a multistage framework for road 
extraction on high-resolution remote sensing imagery. 

That being said, it is not until recent years when deep convolutional neural networks (CNN) 
outperform many other methods on problems concerning machine learning and computer vision that 
high accuracy road extraction on remote sensing imagery become possible. 

Generative adversarial networks (GAN) [4] is a adversarial optimization framework designed to 
generate “fake” data which ideally has the same distribution as real training data. GANs train two 
models, a generator and a discriminator, simultaneously to optimize for a “fake” data generator. The 
discriminator is trained to distinguish between generated “fake” data and real data, which is 
designed as an adversary of the generator in the framework. In terms of images, methods [8] that 
conditioned the GAN with input images (conditional GAN) have achieved astonishing results on 
image-to-image translation problems to generate images real enough to deceive human in visual. 

In this paper, we adapt conditional GANs to solving a slightly different problem where the 
output image is less detailed than the input one. The road extraction problem is treated as a binary 
segmentation problem, i.e., we want to extract the road of an image to produce a binary mask output. 
Based on the above idea, we study the objective of GANs, and constrain the objective of GANs to 
narrow down the generator's task, making it suitable to generate binary road segmentation results on 
remote sensing images. We show that conditional GANs with detailed input images and desired 
binary mask output can be optimized with certain adaption and optimization tweaks. 

2. Method 
Generative Adversarial Networks (GANs) consist of two models: a generator G and a 

discriminator D. For each sample y ~ py(y), the generator aims at estimating the distribution of it, 
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while the discriminator tries to determine whether its input is “true” or “fake”, i.e., whether the 
input is generated by the generator or it is a real sample. GANs try to solve a minimax problem. 

 
Figure 1 Proposed conditional GAN method for road binary mask extraction. 

2.1. Objective 
For our road extraction task, we condition the GAN generator with an input remote sensing 

image x ~ px(x) to force a prediction of road binary mask, as illustrated in Figure 1. Our proposed 
GAN structure follows [8], where the generator is a U-Net [9] stacked up with convolutional layers 
and mirrored deconvolutional layers along with skip connections between each mirrored layer pair, 
and the discriminator is a simple convolutional neural network (CNN) with a probability output. 

2.1.1. Conditional GAN Loss 
For each remote sensing image and its corresponding ground truth road extraction label x, y ~ 

pdata(x, y), the conditional GAN loss is expressed as: 

 cgan ( , ) [log ( , )] [log(1 ( , ( )))]G D D x y D x G x= + −  . (1) 

[8] uses L1, L2-norm as extra constraints for the image-to-image translation task. Our task to 
solve the desired problem, however, is more specific. We focus on the road extraction problem, 
which is considered as a binary segmentation task, and therefore we introduce two commonly used 
binary segmentation loss functions to constrain the generator to fulfil its purpose. 

2.1.2. Binary Segmentation Loss 
In road binary segmentation, the ground truth labels are in {0, 1}. We introduce a binary cross 

entropy loss, as expressed in (2), into the objective of the conditional GAN. 

 bce ( ) [ log ( ) (1 ) log(1 ( ))]G y G x y G x= − ⋅ + − ⋅ − , (2) 

Where the dot represents the dot product of two images treated as vectors, i.e. the sum of 
products of all corresponding pixel values. 

Dice similarity coefficient (DSC) loss is used to measure the similarity of the predicted image 
and the ground truth image as two sets of binary labels. Using the binary segmentation terms: true 
positive (TP), false positive (FP), true negative (TN), false negative (FN), DSC is defined as:  

 2 / (2 )DSC TP TP FP FN= + + ,  

Which is in its discrete form. To make it possible to be trained, we expressed DSC loss in a 
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continuous form:  
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Where yi in {0, 1} denotes the ground truth label of the i-th pixel in image x containing N pixels, 
pi in [0, 1] denotes the predicted probability output of the i-th pixel. 

The overall binary segmentation loss that we use is a linear combination of the binary cross 
entropy and the DSC loss:  

 bseg b bce b( ) (1 ) ( ) ( )DSCG G Gλ λ= − +   , (4) 

Where λb is a coefficient in the range of (0, 1). The objective of the binary segmentation task of 
the generator G is to minimize (4), through which the training process simultaneously minimizes 
the difference of the probability distribution of the predicted labels from that of the ground truth 
labels and maximizes the intersection-over-union metric between the predicted road segmentations 
and the ground truths. 

Our final objective is expressed as follows:  

cgan bsegmin max ( , ) ( , ) ( )G D G D G D Gλ= +   , (5) 

Where λ > 0 is a hyperparameter to control the training balance between the conditional GAN 
loss and the binary segmentation loss. 

2.2. Architecture 
Our generator and discriminator, as illustrated in Figure 1, are adapted from those in [8]. As our 

generator we use U-Net [9] consisting of encoders and mirrored decoders following the encoder-
decoder [1] architecture with skip connections between each pair of mirrored encoder and decoder. 
To produce a probability output, the discriminator is simply designed as a convolutional neural 
network. 

2.2.1. The Generator 
The input size of the generator is 256×256, with 3-channel RGB images as input. The generator 

consists of 8 encoders and 8 decoders. The output size of each encoder starts at 128×128 and is 
halved successively, producing 1×1 features eventually after the final 8th encoder. In the meantime, 
the number of features output for each encoder starts at 64, and is doubled successively, until 
reaching a ceiling of 512. Each of the decoder produces the same output size and number of features 
as those of its mirrored encoder (except the last decoder), and its output is concatenated with the 
input of its mirrored encoder by a skip connection. The output of the last decoder is 256×256×1 in 
size, which is then activated by a sigmoid activation and is the predicted binary mask desired. 

The structure of the encoder is ReLU-convolution-BatchNorm, where in the convolutional unit 
the kernel size is 4×4 and the moving stride is 2, and BatchNorm is a batch normalization unit [7]. 
Similarly, the structure of the decoder is ReLU-deconvolution-BatchNorm-dropout, where in the 
deconvolutional unit the kernel size is 4×4 and the moving stride is 2, and the dropout unit drops 
50% parameters. 

2.2.2. The Discriminator 
The input of the discriminator is 256×256 in size, and 4 in number of channels, which is 

concatenated by a RGB input image and a road extraction binary mask (either a ground truth or a 
predicted “fake” one). There are 5 convolutional layers, the output sizes of which are 128×128, 
64×64, 32×32, 31×31 and 30×30 respectively, while the number of output features are 64, 128, 256, 
512 and 1 respectively. 

In each layer of the discriminator, the structure is convolution-BatchNorm-ReLU, where in each 
convolutional unit the kernel size is 4×4 and the moving stride is 2. 
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2.3. Optimization 
To optimize our conditional GAN, we use minibatch SGD method on the generator G and the 

discriminator D in an alternate way as done in [8]. Several gradient ascent steps are progressed on D 
with G fixed, and after that several gradient descent steps are progressed on G with D fixed. 
Specifically, we use a step size of 1 for optimizing both G and D and a minibatch size of 16. 

3. Experiments and Evaluation 
In this section, we briefly describe the dataset and evaluation metrics we used for all experiments 

conducted, specifically give training and testing details of our proposed conditional GAN models 
and finally provide evaluation and comparison results for our method to U-Net as a baseline. 
3.1. Dataset 

We use the SpaceNet Roads [10] dataset for our experiments. The dataset contains fusion RGB 
images, with a spatial resolution 0.31m and an image size of 1300×1300. There are four regions of 
interest in the dataset, including Vegas, Paris, Shanghai and Khartoum. Both satellite images and 
road centerline vectors annotations are provided by the dataset. 

In our experiments, we randomly crop the input images of size 1300×1300 into 256×256 to fit 
our designed input size for our conditional GAN. 80% of the data are separated into training dataset, 
and the rest into testing dataset. 

The annotations of the dataset we used in this section are road centerline vectors instead of road 
binary masks. In order to prepare the dataset for experiments, we take a preprocessing step over the 
image annotations, where a simple boundary fill method with fixed width of 4m is applied on road 
centerlines to produce binary masks. 

3.2. Optimization Details 
In all experiments, we choose λb = 0.5 and λ = 100. As for the neural network training, we 

choose Adam optimizer with an initial learning rate of 2.0×10-4, a momentum of 0.5 and a 
minibatch size of 16. We train 100–200 epochs for each model to get a best result. We use 
TensorFlow as the deep learning framework. 

During testing, we crop a full size image into 1280×1280 to feed into the trained generator. 
The conditional GAN architecture and the training procedure in our experiments are adapted 

from Hesse's implementation of [8]. The output of the generator is in an continuous range of [0, 1], 
whereas the ground truth labels are binary in {0, 1}, which makes it too easy for the discriminator 
to discriminate between “true” road binary masks and “fake” predictions. Therefore, we discretize 
the output of the generator into {0, 1} for the use as input for the discriminator. 

3.3. Results 
In this section, we evaluate the performance of our conditional GAN based road extraction 

model using pixel level metrics including intersection-over-union (IoU), precision and recall.  

 , ,TP TP TPIoU Precision Recall
TP FP FN TP FP FP FN

= = =
+ + + +

,  

All three metrics are evaluated over the test dataset and then averaged. 
Table 1 Quantitative results of road binary segmentation metrics for different methods (%). 

 mean IoU Precision Recall 
U-Net 65.2 74.1 81.9 

Howe et al. 89.0 - - 
Our cGAN 63.7 73.0 80.8 

cGAN + postprocessing 65.6 76.9 80.1 
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U-Net conditional GAN 

Figure 2 Detailed comparisons between road extraction using our conditional GAN and U-Net as 
baseline: connectivity. Main differences are shown in circle, and true positive in blue, false positive 

in red, false negative in green. Better view in color. 

    

    

    
Input image Ground truth Predicted output Visual result 

Figure 3 Visual results of our conditional GAN method on road extraction. On the last column: true 
positive in blue, false positive in red, false negative in green. Better view in color. 

Table 1 lists mean IoU, precision and recall for four different methods evaluated on test set. We 
train a U-Net of the same structure as our conditional GAN generator independently as a baseline 
model. Howe et al. [6] uses a model adapted from U-Net and ResNet [5], and we list the authors' 
results in the table as comparison. For our cGAN method, we apply certain postprocessing steps to 
retrieve a slightly better result. In postprocessing, we firstly Gaussian blur the road binary mask 
predicted by the generator of our conditional GAN, secondly skeletonize the mask using 
morphology algorithms and finally apply boundary fill again to reproduce a road binary mask of 
width 4m. All postprocessing steps use the scikit-image library. 

From Table 1, we find our cGAN method to have comparable performance to the baseline U-Net. 
Our method reaches a road precision of ~75% and tends to have a higher recall rate. Figure 2 shows 
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comparison of our method to U-Net with two sample images. From this figure, we find that the 
connectivity of our method can be better than that of U-Net. 

Visual results of our method is shown in Figure 3, where the sample images are taken from the 
test set. This figure shows various extraction results: good ones, ones with false positives and ones 
with false negatives. Meanwhile, there are some defects of our method shown on the sample images. 
It is still difficult to obtain accurate extraction result where there are shadows of plants or buildings, 
as illustrated on the 2nd and the last row in Figure 3. 

4. Conclusion 
The road extraction method proposed in this paper, which adapts a conditional GAN in its 

objective, is able to generate comparable results on remote sensing imagery. The experiments show 
promising performances both in evaluation metrics and in visualization, especially in the recall of 
road pixels. Conditional GANs have a great potential in solving vision problems. 
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